Regulatory Science Institute .Inc 創薬研究の戦略とツール・テクノロジー

HOME > 創薬研究の戦略とツール・テクノロジー

創薬研究の戦略とツール・テクノロジー

創薬・開発研究の話題一覧

▼2015/4
話題23:USFDA の2014年度の新規医薬品の概要

▼2013/10
話題22:将来を見据えた医薬品開発

▼2012/8
話題21:医薬品開発のプロダクテイビティーとPGバイオマーカー

▼2011/12
話題20:創薬テーマとベネフィット

▼2011/12
話題19:中国における医薬品開発

▼2011/3
話題18:新規医薬品の承認

▼2011/2
話題17:今や、バイオマーカーの研究なくしては医薬品の開発は考えられない!

▼2010/7
話題16:何が創薬には求められるのか?

▼2010/7
話題15:新医薬品の開発動向と取り組み

▼2010/2
話題14:代謝物の安全性評価

▼2010/1
話題13:創薬テーマと開発の成功率・開発期間

▼2009/10
話題12:医薬品開発におけるリスク評価

▼2009/4
話題11:2008年度USFDA承認新薬からみた研究開発動向

▼2009/1
話題10:わが国における生物学的同等性試験のバイオウエーバーについて

▼2008/9
話題9:創薬と研究開発費

▼2008/1
話題8:初めてのヒト試験における投与量の算出と考え方

▼2007/9
話題7:パイプラインの拡大

▼2007/8
話題6:何が、研究開発に求められるているのか?

▼2007/4
話題5:2006年、米国FDAで承認された新薬、新規な作用機作は少なく22個

▼2007/1
話題3:創薬の夢と風土について

▼2006/9
話題2:創薬テーマと開発の成功率

▼2006/9
話題1:USFDAの白書:革新と停滞 新薬へのクリティカル・パスに対する挑戦と課題及びオポチユニティーについて

最新の話題

創薬・開発の話題10:わが国における生物学的同等性試験のバイオウエーバーについて更新日:2009年1月8日

医療費抑制の一環として、官民あげての後発医薬品の使用促進が進められている。 富士経済によれば、国内後発品市場は07年から10年の間に17.5%成長し、2010年の後発医薬品市場は3597億円となると予想されている。 厚生労働省は、2008年7日付で、後発医薬品35成分99品目を薬価基準に収載し、同日付で官報告示した。
収載された後発品で品目数が最も多かったのは、血圧降下剤の塩酸イミダプリル(先発品:タナトリル錠=田辺三菱製薬)の21品目。次いで抗生物質セフジニル(セフゾン=アステラス製薬)の14品目、潰瘍性大腸炎・クローン病治療薬のメサラジン(ペンタサ錠=日清キョーリン製薬)の6品目、注射用抗菌薬のテイコプラニン(注射用タゴシット=サノフィ・アベンティス)5品目、MRI用造影剤のガトペンテト酸メグルミン(マグネビストシリンジ=バイエル薬品)5品目と続いた(添付資料参照)。 塩酸イミダプリルについては、含量違いを含めて21品目が収載された。
わが国の場合、後発医薬品を始めて厚生労働省に申請する場合、先発医薬品(対照薬)とのヒトでの生物学的同等性試験が必須である。 従って、塩酸イミダプリル製剤については、ヒトで何回もの生物学的同等性試験が行われていると予想される(申請企業がすべて異なれば、21回の生物学的同等性試験が実施されている?)、貴重なヒト資源を無駄に使われているような気がする。 欧米では、薬物の物理化学的及び生物薬剤学的性質により、生物学的同等性試験が免除(バイオウエーバー)され、同等性の裏付ける溶出試験で承認されている。
  わが国でも、後発医薬品のみならず新規開発医薬品でも、上記の薬物の特性により生物学的同等性試験の免除を認めるべきであろう。 
PDF参照

創薬関係のツールとテクノロジー

現在、一個の新薬を開発するのにおよそ1200億円の研究開発費と10年の年月を要すると云われており、新薬開発の道のりは非常に長く遠いと云わざるを得ない。
それだけに、21世紀の新薬開発には、旧世紀の古いテクノロジーやコンセプトを棄て、革新的なツールやテクノロジーを駆使し、できるだけ速やかに安全性と有効性の優れた医薬品を患者さんに届けなければならない。

新薬の研究開発は、開発候補薬物を創製する創薬研究とその候補薬物を前臨床試験、臨床試験を通して有効性及び安全性を確認し、製造販売承認を得る開発研究からなる。
現在、満足した治療薬がない疾患も数多くあり、また、治療薬があっても様々な問題を抱えた薬物も少なくない(SPDF1)。
創薬研究の流れを図1に示したが、もっとも大切なことは創薬テーマの選択、どのような領域でどのような治療薬をどのような戦略で研究開発していくかであろう。

研究テーマが決まれば、シーズ探索→アッセイ系の確立→リード化合物創製→リード化合物最適化を経て、物性、生物活性、薬理活性、毒性、薬物動態等がある程度満足できる開発候補薬物が選択され、開発研究のステージへ進む。リード化合物が4個あれば、開発候補薬物を1個創出できればよいと云われている。

従来、創薬研究は、有機合成研究者や薬理研究者の勘と経験を頼りに微生物が産生する物質や天然の薬物を出発に取組まれてきた。
しかし、現在では、近年の生物医学やITの進歩により、特に、一連の創薬プロセスのすべてにゲノムサイエンスを幅広く取り入れ、より科学的および合理的に開発候補薬物を創出する、いわゆるゲノム創薬へと変化しつつある。

今後、図に示すように多種多様なテクノロジーやツールを如何に駆使するかが企業の新薬創出力を左右するのではないかと予想される。

図1. 創薬研究の流れ

開発研究の戦略とツール・テクノロジー

開発研究は、図1に示すような流れになり"Critical Path"と云われている。
現在、前臨床試験から申請までの成功率は10%弱で、最近, 特に問題になっているのは、開発後期のP2やP3試験で有効性や安全性に問題があり、開発が中止することで、このステージでの成功率は60%と云われている。
実際、この数年、新薬の承認数も少なくなり、質・量的にも大きな問題になっている(KPDF1)。

米国の食品医薬品局(USFDA)は近年の生物医学の革新により、重篤な疾患の予防、治療および治癒に大きな希望が見えつつあるにも拘わらず、より安全性・有効性が優れ、より使いやすい医薬品製剤が必ずしも患者さんに届けられていない事に大きな懸念を抱いている。
これからの開発研究は図1に示すよう新しい概念を取り込んだツールやテクノロジーのブレイクスルーにより、In vitro や動物からヒトでの予測性を高めると同時に、従来の多数の集団を対象とした臨床試験をも色んな面で革新化する必要がある。

図1. 開発研究(クリティカルパス)の流れ

図2. 前臨床試験